A rigid sealed "3.70 L"3.70 L vessel contains "0.12 mol"0.12 mol of He(g)He(g) and "0.24 mol"0.24 mol Ne(g)Ne(g) at 25^@ "C"25∘C. What is the total pressure in the vessel?
1 Answer
"Rigid" containers have constant volume, and we were given that
So, we can use the ideal gas law for total volume, total pressure, and total
bb(PV = nRT)PV=nRT
=> color(blue)(P) = (nRT)/V = ((n_1 + n_2)RT)/V⇒P=nRTV=(n1+n2)RTV
= (("0.12 + 0.24 mols")("0.082057 L"cdot"atm/mol"cdot"K")("298.15 K"))/("3.70 L")=(0.12 + 0.24 mols)(0.082057 L⋅atm/mol⋅K)(298.15 K)3.70 L
== color(blue)("2.38 atm")2.38 atm
Another way to do it is via Dalton's Law of partial pressures for an ideal two-gas mixture:
bb(P = P_1 + P_2 + . . .)P=P1+P2+...
To find
P_1V = n_1RTP1V=n1RT
P_1 = (n_1RT)/V = (("0.12 mols")("0.082057 L"cdot"atm/mol"cdot"K")("298.15 K"))/("3.70 L")P1=n1RTV=(0.12 mols)(0.082057 L⋅atm/mol⋅K)(298.15 K)3.70 L
== "0.79 atm"0.79 atm
Similarly:
P_2 = (n_2RT)/V = (("0.24 mols")("0.082057 L"cdot"atm/mol"cdot"K")("298.15 K"))/("3.70 L")P2=n2RTV=(0.24 mols)(0.082057 L⋅atm/mol⋅K)(298.15 K)3.70 L
== "1.59 atm"1.59 atm
So that the sum is, again:
color(blue)(P) = P_1 + P_2P=P1+P2
= (n_1RT)/V + (n_2RT)/V=n1RTV+n2RTV
= "0.79 + 1.59 atm" = color(blue)("2.38 atm")=0.79 + 1.59 atm=2.38 atm
(In a way, we implied Dalton's Law of partial pressures in the first method.)