A solution of formic acid has a pH of 2.70, calculate the initial concentration of formic acid?

K_a=1.8xx10^-4 for formic acid


My work:

webcam

1 Answer
Jul 20, 2018

underbrace([HC(=O)OH]=0.0241*mol*L^-1)_"INITIALLY"

Explanation:

We address the equilibrium...

HC(=O)OH(aq)+H_2O(l)rightleftharpoonsHCO_2^(-) + H_3O^+

And at equilibrium...K_a=([HCO_2^(-)][H_3O^+])/([HC(=O)OH(aq)])=1.80xx10^-4

But pH=-log_10[H_3O^+]=2.70...

And so [H_3O^+]=[HCO_2^-]=10^(-2.70)*mol*L^-1=

And so AT EQUILIBRIUM...1.80xx10^-4=({10^(-2.70)}^2)/([HC(=O)OH(aq)])

[HC(=O)OH(aq)]_"at equilibrium"=({10^(-2.70)}^2)/(1.80xx10^-4)

-=0.0221*mol*L^-1...but this is the equilibrium value....and [H_3O^+]=1.995xx10^-3*mol*L^-1 by definition...

And since the hydronium ion is PRESUMED to derive from the formic acid...[HC(=O)OH]_"initially"=(0.0221+1.995 xx 10^(-3))*mol*L^-1=0.0241*mol*L^-1...the degree of dissociation was miniscule....

Pleas check my 'rithmetik...