A triangle has corners at (1 , 2 ), (5 ,7 ), and (9 ,5 ). What is the radius of the triangle's inscribed circle?

1 Answer

Radius of inscribed circle r=1.44187

Explanation:

Let A(x_a, y_a)=(1, 2)
Let B(x_b, y_b)=(5, 7)
Let C(x_c, y_c)=(9, 5)

Let a the side from B to C
Let b the side from A to C
Let c the side from A to B

a=sqrt((x_b-x_c)^2+(y_b-y_c)^2)
a=sqrt((5-9)^2+(7-5)^2)=sqrt20

b=sqrt((x_a-x_c)^2+(y_a-y_c)^2)
b=sqrt((1-9)^2+(2-5)^2)
b=sqrt(73)

c=sqrt((x_b-x_a)^2+(y_b-y_a)^2)
c=sqrt((5-1)^2+(7-2)^2)
c=sqrt(41)

Compute half of the perimeter s
s=(a+b+c)/2
s=9.709631968875

Compute radius r of inscribed circle

r=sqrt(((s-a)(s-b)(s-c))/s)
r=1.44187

God bless....I hope the explanation is useful.