A triangle has corners at #(1, 3 )#, ( 2, -4)#, and #(8, -5 )#. If the triangle is reflected across the x-axis, what will its new centroid be?

1 Answer
Mar 5, 2018

New centroid #color(indigo)(G’(x, y) => ( 11/3, -2)#

Explanation:

Reflection rules
www.onlinemath4all.com%252Freflection-transformation.html

Reflection about the x - axis #color(red)(x,y) color(blue)(-> )color(purple)(x, -y)#

Three points A, B, C will become A’, B’, C’.

#color(red)(A ( 1, 3) ) color(blue)(- >) color(purple)( A’ (1, -3))#

#color(red)(B ( 2, -4) ) color(blue)(- >) color(purple)( B’ (2, 4))#

#color(red)(A ( 8, -5) ) color(blue)(- >) color(purple)( C’ (8, 5))#

New Centroid is found out using the formula

https://www.onlinemath4all.com/centroidofatriangle.html

#color(green)G’_x = (x_A + x_B + x_C) / 3 = (1 + 2 + 8) / 3 = color(green)(11/3)#

#color(green)G’_y = (y_A + y_B + y_C) / 3 = (-3 + 4 + 5) / 3 = color(green)(2)#

New centroid #color(indigo)(G’(x, y) => ( 11/3, -2)#