A triangle has corners at (1 , 5 )(1,5), (4 ,8 )(4,8), and (9 ,7 )(9,7). What is the radius of the triangle's inscribed circle?

1 Answer
Jun 8, 2017

The radius of the inscribed circle is =1.02=1.02

Explanation:

enter image source here

Let the radius of the inscribed circle be =r=r

The area of the triangle is

A=1/2*r*(a)+1/2*r*(b)+1/2*r*(c)A=12r(a)+12r(b)+12r(c)

A=1/2r(a+b+c)A=12r(a+b+c)

r=(2A)/(a+b+c)r=2Aa+b+c

Let,

A=(4,8)A=(4,8)

B=(1,5)B=(1,5)

C=(9,7)C=(9,7)

a=sqrt((9-1)^2+(7-5)^2)=sqrt(64+4)=sqrt68a=(91)2+(75)2=64+4=68

b=sqrt((9-4)^2+(7-8)^2)=sqrt(25+1)=sqrt26b=(94)2+(78)2=25+1=26

c=sqrt((4-1)^2+(8-5)^2)=sqrt(9+9)=sqrt18c=(41)2+(85)2=9+9=18

so,

(a+b+c)=sqrt68+sqrt26+sqrt18(a+b+c)=68+26+18

The area of the triangle is

A=1/2|(4,8,1),(1,5,1),(9,7,1)|

=1/2(4*|(5,1),(7,1)|-8*|(1,1),(9,1)|+1*|(1,5),(9,7)|)

=1/2((4*-2)-(8*-8)+(1*-38))

=1/2(-8+64-38)

=9

Therefore,

r=(2*9)/(sqrt68+sqrt26+sqrt18)=1.02