A triangle has corners at (1 ,5 )(1,5), (7 ,9 )(7,9), and (4 ,2 )(4,2). What is the area of the triangle's circumscribed circle?

1 Answer
Jul 27, 2017

The area of the circumscribed circle is =47.38u^2=47.38u2

Explanation:

To calculate the area of the circle, we must calculate the radius rr of the circle

Let the center of the circle be O=(a,b)O=(a,b)

Then,

(1-a)^2+(5-b)^2=r^2(1a)2+(5b)2=r2.......(1)(1)

(7-a)^2+(9-b)^2=r^2(7a)2+(9b)2=r2..........(2)(2)

(4-a)^2+(2-b)^2=r^2(4a)2+(2b)2=r2.........(3)(3)

We have 33 equations with 33 unknowns

From (1)(1) and (2)(2), we get

1-2a+a^2+25-10b+b^2=49-14a+a^2+81-18b+b^212a+a2+2510b+b2=4914a+a2+8118b+b2

12a+8b=130-26=10412a+8b=13026=104

3a+2b=263a+2b=26.............(4)(4)

From (3)(3) and (2)(2), we get

16-8a+a^2+4-4b+b^2=49-14a+a^2+81-18b+b^2168a+a2+44b+b2=4914a+a2+8118b+b2

6a+14b=130-20=1106a+14b=13020=110

3a+7b=553a+7b=55..............(5)(5)

From equations (4)(4) and (5)(5), we get

26-2b=55-7b262b=557b, =>, 5b=295b=29, b=29/5b=295

3a=26-2b=26-58/5=72/53a=262b=26585=725, =>, a=24/5a=245

The center of the circle is =(24/5,29/5)=(245,295)

r^2=(1-24/5)^2+(5-29/5)^2=(-19/5)^2+(-4/5)^2r2=(1245)2+(5295)2=(195)2+(45)2

=361/25+16/25=36125+1625

=377/25=37725

The area of the circle is

A=pi*r^2=pi*377/25=47.38u^2A=πr2=π37725=47.38u2