A triangle has corners at (2 ,3 )(2,3), (1 ,2 )(1,2), and (5 ,8 )(5,8). What is the radius of the triangle's inscribed circle?

1 Answer
Mar 2, 2018

radiusapprox1.8radius1.8 units

Explanation:

Let the vertices of DeltaABC are A(2,3), B(1,2) and C(5,8).

Using distance formula,

a=BC=sqrt((5-1)^2+(8-2)^2)=sqrt(2^2*13)=2*sqrt(13)

b=CA=sqrt((5-2)^2+(8-3)^2)=sqrt(34)

c=AB=sqrt((1-2)^2+(2-3)^2)=sqrt(2)

Now, Area of DeltaABC=1/2|(x_1,y_1,1), (x_2,y_2,1),(x_3,y_3,1)|

=1/2|(2,3,1), (1,2,1),(5,8,1)|=1/2|2*(2-8)+3*(1-5)+1*(8-10)|=1/2|-12-12-2|=13 sq. units

Also, s=(a+b+c)/2=(2*sqrt(13)+sqrt(34)+sqrt(2))/2=approx7.23 units

Now, let r be the radius of triangle's incircle and Delta be the area of triangle, then

rarrr=Delta/s=13/7.23approx1.8 units.