A triangle has corners at (2 , 4 ), (1 ,3 ), and (6 ,7 ). What is the radius of the triangle's inscribed circle?

1 Answer
Jul 22, 2018

Radius of the inscribed circle color(blue)(r = 0.0793)

Explanation:

A(2,4), B(1,3), C(6,7)

a = sqrt((1-6)^2 + (3-7)^2) ~~ 6.4031

b = sqrt ((6-2)^2 + (7-4)^2) = 5

c = sqrt((2-1)^2 + (4-3)^2) ~~ 1.4142

Semi perimeter s = (a + b + c)/2

s = (6.4031 + 5 + 1.4142) / 2 = 6.4087

Area of triangle A_t = sqrt(s (s-a) (s-b) (s-c))

A_t = sqrt(6.4087 (6.4087-6.4031) (6.4087-5) (6.4087-1.4142)) = 0.5025

In-radius r = A_t / s = 0.5025 / 6.4087 = 0.0793