A triangle has corners at (2,5), (3,1), and (4,2). What is the area of the triangle's circumscribed circle?

1 Answer
Jul 10, 2018

Area of Circum circle AR=πR2=π2.10242=13.8861 sq units

Explanation:

![http://mathibayon.blogspot.com/2015/01/derivation-of-formula-for-radius-of-circumcircle.html

Area of Triangle =AT=abc4R

A(2,5),B(3,1),C(4,2)

a=(23)2+(51)2=17=4.1231

b=(34)2+(12)2=2=1.4142

c=(42)2+(25)2=13=3.6056

Semi perimeter of the triangle s=a+b+c2=4.5715

AT=s(sa)(sb)(sc)

AT=4.5715(4.57154.1231)(4.57151.4142)(4.57153.6056)=2.5

R=abc4AT=1721342.5=2.1024

Area of Circum circle AR=πR2=π2.10242=13.8861 sq units