A triangle has corners at (2,6), (8,2), and (1,3). What is the radius of the triangle's inscribed circle?

1 Answer
Jun 21, 2018

Radius of incircle r=Ats=10.998.72=1.26 units

Explanation:

![http://mathibayon.blogspot.com/2015/01/http://derivation-of-formula-for-radius-of-incircle.html](https://useruploads.socratic.org/qByQYJn5SEeAPjtKhB4j_incircle%20radius.png)

Incircle radius r=Ats

A(2,6),B(8,2),C(1,3)

a=(81)2+(23)2=7.07

b=(12)2+(36)2=3.16

c=(28)2+(62)2=7.21

Semi-perimeter s=a+b+c2=7.07+3.16+7.212=8.72

At=s(sa)sb(sc))

At=8.72(8.727.07)(8.723.16)(8.727.21)=10.99

Radius of incircle r=Ats=10.998.72=1.26 units