A triangle has corners at (2 , 9 ), (3 ,7 ), and (1 ,1 ). What is the radius of the triangle's inscribed circle?

1 Answer

r=0.60158" "units

Explanation:

From the given data:
Let A(2, 9) and B(3,7) and C(1,1)

We let side a the distance B to C
We let side b the distance A to C
We let side c the distance A to B

Compute the lengths of the sides

a=sqrt((x_b-x_c)^2+(y_b-y_c)^2)
a=sqrt((3-1)^2+(7-1)^2)
a=2sqrt10

b=sqrt((x_a-x_c)^2+(y_a-y_c)^2)
b=sqrt((2-1)^2+(9-1)^2)
b=sqrt(65)

c=sqrt((x_a-x_b)^2+(y_a-y_b)^2)
c=sqrt((2-3)^2+(9-7)^2)
c=sqrt((1+4)
c=sqrt5

We are now ready to compute for the radius r of the triangle's inscribed circle:

Formula r=sqrt(((s-a)(s-b)(s-c))/s)" " "where s=(a+b+c)/2

s=(2sqrt10+sqrt65+sqrt5)/2=8.3114405230675

r=
sqrt(((8.311440-2sqrt10)(8.311440-sqrt65)(8.311440-sqrt5))/8.311440)

r=0.60158" "units

God bless....I hope the explanation is useful.