A triangle has corners at (3 , 2 ), (1 ,7 ), and (5 ,4 ). What is the radius of the triangle's inscribed circle?

1 Answer
Jul 15, 2017

The radius of the incircle is =1.06

Explanation:

enter image source here

The length of the sides of the triangle are

c=sqrt((1-3)^2+(7-2)^2)=sqrt(4+25)=sqrt29=5.39

a=sqrt((5-1)^2+(4-7)^2)=sqrt(16+9)=5

b=sqrt((5-3)^2+(4-2)^2)=sqrt(4+4)=sqrt8=2.83

The area of the triangle is

A=1/2|(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)|

=1/2(x_1(y_2-y_3)-y_1(x_2-x_3)+(x_2y_3-x_3y_2))

A=1/2|(3,2,1),(1,7,1),(5,4,1)|

=1/2(3*|(7,1),(4,1)|-2*|(1,1),(5,1)|+1*|(1,7),(5,4)|)

=1/2(3(7-4)-2(1-5)+1(4-35))

=1/2(9+8-31)

=1/2|-14|=7

The radius of the incircle is =r

1/2*r*(a+b+c)=A

r=(2A)/(a+b+c)

=14/(13.22)=1.06