A triangle has corners at (3 , 3 ), (4 ,2 ), and (8 ,9 ). What is the radius of the triangle's inscribed circle?

1 Answer

r=0.6363265774

Explanation:

there is a formula for solving the radius r of the inscribed circle

r = sqrt(((s-a)(s-b)(s-c))/s)" "

where s=half the perimeter of the triangle

and s=1/2*(a+b+c)

Let A(3, 3), B(4, 2), C(8, 9)

so that
a=distance from B to C
b=distance from A to C
c=distance from A to B

a=sqrt((x_B-x_C)^2+(y_B-y_C)^2)
a=sqrt((4-8)^2+(2-9)^2)
a=sqrt(16+49)
a=sqrt(65)

b=sqrt((x_A-x_C)^2+(y_A-y_C)^2)
b=sqrt((3-8)^2+(3-9)^2)
b=sqrt(25+36)
b=sqrt(61)

c=sqrt((3-4)^2+(3-2)^2)
c=sqrt(1+1)
c=sqrt(2)

Compute s

s=1/2*(a+b+c)
s=1/2*(sqrt(65)+sqrt(61)+sqrt(2))

Compute r

r = sqrt(((1/2*(sqrt(65)+sqrt(61)+sqrt(2))-sqrt(65))(1/2*(sqrt(65)+sqrt(61)+sqrt(2))-sqrt(61))(1/2*(sqrt(65)+sqrt(61)+sqrt(2))-sqrt(2)))/(1/2*(sqrt(65)+sqrt(61)+sqrt(2))))" "

r=sqrt(((0.581102745)(0.8331108174)(7.229146931))/8.643360493)

r=0.6363265774

God bless.....I hope the explanation is useful.