there is a formula for solving the radius r of the inscribed circle
r = sqrt(((s-a)(s-b)(s-c))/s)" "
where s=half the perimeter of the triangle
and s=1/2*(a+b+c)
Let A(3, 3), B(4, 2), C(8, 9)
so that
a=distance from B to C
b=distance from A to C
c=distance from A to B
a=sqrt((x_B-x_C)^2+(y_B-y_C)^2)
a=sqrt((4-8)^2+(2-9)^2)
a=sqrt(16+49)
a=sqrt(65)
b=sqrt((x_A-x_C)^2+(y_A-y_C)^2)
b=sqrt((3-8)^2+(3-9)^2)
b=sqrt(25+36)
b=sqrt(61)
c=sqrt((3-4)^2+(3-2)^2)
c=sqrt(1+1)
c=sqrt(2)
Compute s
s=1/2*(a+b+c)
s=1/2*(sqrt(65)+sqrt(61)+sqrt(2))
Compute r
r = sqrt(((1/2*(sqrt(65)+sqrt(61)+sqrt(2))-sqrt(65))(1/2*(sqrt(65)+sqrt(61)+sqrt(2))-sqrt(61))(1/2*(sqrt(65)+sqrt(61)+sqrt(2))-sqrt(2)))/(1/2*(sqrt(65)+sqrt(61)+sqrt(2))))" "
r=sqrt(((0.581102745)(0.8331108174)(7.229146931))/8.643360493)
r=0.6363265774
God bless.....I hope the explanation is useful.