A triangle has corners at (3 , 4 ), (8 ,2 ), and (1 ,8 ). What is the radius of the triangle's inscribed circle?

1 Answer

The radius of inscribed circle r=0.8387131004" "unit

Explanation:

Let us label the points A(3, 4), B(8, 2), C(1, 8)
Solve for the distances a=BC and b=AC and c=AB

The radius of the inscribed circle r formula

r=sqrt(((s-a)(s-b)(s-c))/s)

Solve for the values of s, a, b, and c first

a=sqrt((x_b-x_c)^2+(y_b-y_c)^2)
a=sqrt((8-1)^2+(2-8)^2)
a=sqrt85

b=sqrt((x_a-x_c)^2+(y_a-y_c)^2)
b=sqrt((3-1)^2+(4-8)^2)
b=sqrt20

c=sqrt((x_a-x_b)^2+(y_a-y_b)^2)
c=sqrt((3-8)^2+(4-2)^2)
c=sqrt(29)

Half the Perimeter of the triangle s

s=(a+b+c)/2=(sqrt85+sqrt20+sqrt29)/2

Compute r

r=
sqrt((((sqrt85+sqrt20+sqrt29)/2-a)((sqrt85+sqrt20+sqrt29)/2-b)((sqrt85+sqrt20+sqrt29)/2-c))/[0.5*(sqrt85+sqrt20+sqrt29)])

r=0.8387131004

God bless....I hope the explanation is useful.