A triangle has corners at (3 , 5 )(3,5), (4 ,7 )(4,7), and (4 ,6 )(4,6). What is the radius of the triangle's inscribed circle?

1 Answer
May 18, 2018

Radius of inscribed circle color(brown )(r = 0.215r=0.215 units

Explanation:

A(3,5), B(4,7), C(4,6)A(3,5),B(4,7),C(4,6)

Using distance formula,

bar(AB) = c = sqrt((3-4)^2+(5-7)^2) = sqrt5 = 2.236¯¯¯¯¯¯AB=c=(34)2+(57)2=5=2.236

bar(BC) = a = sqrt((4-4)^2 + (7-6)^2) = 1¯¯¯¯¯¯BC=a=(44)2+(76)2=1

bar(AC) = b = sqrt((3-4)^2 + (5-6)^2) = sqrt2 = 1.414¯¯¯¯¯¯AC=b=(34)2+(56)2=2=1.414

Area of triangle knowing all three sides is given by

A_t = sqrt(s (s-a)(s-b)(s-c))At=s(sa)(sb)(sc)

Where semi perimeter = s = (a + b + c) / 2s=a+b+c2

s = (1 + 1.414 + 2.236) / 2 = 4.65/2 = 2.325s=1+1.414+2.2362=4.652=2.325

A_t = sqrt(2.325 (2.325-1) * (2.325-1.414) * (2.325 -2.236)) = 0.5At=2.325(2.3251)(2.3251.414)(2.3252.236)=0.5

Let r be the radius of incircle.

Then r = A_t / s = 0.5 / 2.325 = color(brown)(0.215r=Ats=0.52.325=0.215 units