A(3,5), B(4,7), C(4,6)A(3,5),B(4,7),C(4,6)
Using distance formula,
bar(AB) = c = sqrt((3-4)^2+(5-7)^2) = sqrt5 = 2.236¯¯¯¯¯¯AB=c=√(3−4)2+(5−7)2=√5=2.236
bar(BC) = a = sqrt((4-4)^2 + (7-6)^2) = 1¯¯¯¯¯¯BC=a=√(4−4)2+(7−6)2=1
bar(AC) = b = sqrt((3-4)^2 + (5-6)^2) = sqrt2 = 1.414¯¯¯¯¯¯AC=b=√(3−4)2+(5−6)2=√2=1.414
Area of triangle knowing all three sides is given by
A_t = sqrt(s (s-a)(s-b)(s-c))At=√s(s−a)(s−b)(s−c)
Where semi perimeter = s = (a + b + c) / 2s=a+b+c2
s = (1 + 1.414 + 2.236) / 2 = 4.65/2 = 2.325s=1+1.414+2.2362=4.652=2.325
A_t = sqrt(2.325 (2.325-1) * (2.325-1.414) * (2.325 -2.236)) = 0.5At=√2.325(2.325−1)⋅(2.325−1.414)⋅(2.325−2.236)=0.5
Let r be the radius of incircle.
Then r = A_t / s = 0.5 / 2.325 = color(brown)(0.215r=Ats=0.52.325=0.215 units