A triangle has corners at (3 , 5 ), (6 ,1 ), and (2 ,4 ). What is the radius of the triangle's inscribed circle?

1 Answer
Jul 30, 2018

The radius of triangle's inscribed circle is:

r=Delta/s=(3.5/(5+sqrt2/2))~~0.6133" units"

Explanation:

Let , triangleABC " be the triangle with corners at

A(3,5) , B(6,1) and C(2,4)

Using Distance Formula:

a=BC=sqrt((6-2)^2+(1-4)^2)=sqrt(16+9)=5

b=CA=sqrt((3-2)^2+(5-4)^2)=sqrt(1+1)=sqrt2

c=AB=sqrt((3-6)^2+(5-1)^2)=sqrt(9+16)=5

So, the semiperimeter of triangle is :

s=(a+b+c)/2=(5+sqrt2+5)/2=5+sqrt2/2~~5.7071

:. "The area of "triangleABC:

Delta=sqrt(s(s-a)(s-b)(s-c))

:.Delta=sqrt((5+sqrt2/2)(sqrt2/2)(5-sqrt2/2)(sqrt2/2))

Delta=sqrt([5^2-(sqrt2/2)^2][(sqrt2/2)^2]

=sqrt([25-1/2][1/2]

=sqrt(49/4)

:.Delta=7/2=3.5

So , the radius of triangle's inscribed circle is:

r=Delta/s=(3.5/(5+sqrt2/2))~~0.6133" units"