A triangle has corners at (3 ,6 ), (2 ,9 ), and (8 ,4 ). What is the area of the triangle's circumscribed circle?

1 Answer
Jul 12, 2016

Area of the Circumcircle =(61*29*5*pi)/(26*13)~=82.17 sq.unit

Explanation:

Let A(3,6), B(2,9), C(8,4) be the vertices of DeltaABC.

In the usual notation, we know by Trigo., that, abc=4RDelta....(i).

Here, a^2=BC^2=(2-8)^2+(9-4)^2=36+25=61.

b^2=AC^2=(3-8)^2+(6-4)^2=25+4=29.

c^2=AB^2=(3-2)^2+(6-9)^2=1+9=10.

Also, Delta=1/2|D|, where, D=|(3,6,1),(2,9,1),(8,4,1)|,

=3(9-4)-6(2-8)+1(8-72)=3(5)-6(-6)-64=15+36-64=-13,

:. Delta=(1/2)|-13|=13/2.

Thus, a^2=61, b^2=29, c^2=10, Delta=13/2. Sub.ing, in (i),

sqrt(61*29*10)=4R*13/2=26R rArr R=sqrt(61*29*10)/26.

Therefore, Area of the Circumcircle of DeltaABC=piR^2=(61*29*10*pi)/(26*26)=(61*29*5*pi)/(26*13)~=82.17 sq.unit

Enjoy Maths!