A triangle has corners at (4 , 5 )(4,5), (1 ,3 )(1,3), and (5 ,3 )(5,3). What is the radius of the triangle's inscribed circle?

1 Answer
Jul 21, 2017

The radius of the incircle is =0.81u=0.81u

Explanation:

enter image source here

The corners are

A=(4,5)A=(4,5)

B=(1,3)B=(1,3)

C=(5,3)C=(5,3)

The length of the sides of the triangle are

c=sqrt((1-4)^2+(3-5)^2)=sqrt(9+4)=sqrt13=3.61c=(14)2+(35)2=9+4=13=3.61

a=sqrt((5-1)^2+(3-3)^2)=sqrt(16+0)=sqrt14=4a=(51)2+(33)2=16+0=14=4

b=sqrt((5-4)^2+(3-5)^2)=sqrt(1+4)=sqrt5=2.24b=(54)2+(35)2=1+4=5=2.24

The area of the triangle is

A=1/2|(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)|

=1/2(x_1(y_2-y_3)-y_1(x_2-x_3)+(x_2y_3-x_3y_2))

A=1/2|(4,5,1),(1,3,1),(5,3,1)|

=1/2(4*|(3,1),(3,1)|-5*|(1,1),(5,1)|+1*|(1,3),(5,3)|)

=1/2(4(3-3)-4(1-5)+1(3-15))

=1/2(0+20-12)

=1/2|8|=4

The radius of the incircle is =r

1/2*r*(a+b+c)=A

r=(2A)/(a+b+c)

=8/(9.85)=0.81