A triangle has corners at (4 , 5 )(4,5), (3 ,2 )(3,2), and (1 ,3 )(1,3). What is the radius of the triangle's inscribed circle?

1 Answer
Jun 22, 2018

color(cyan)("Radius of inscribed circle " r = A_t / s = 3.62/ 4.529 = 0.8 " units"Radius of inscribed circle r=Ats=3.624.529=0.8 units

Explanation:

![http://mathibayon.blogspot.com/2015/01/http://derivation-of-formula-for-radius-of-incircle.html](https://useruploads.socratic.org/qByQYJn5SEeAPjtKhB4j_incircle%20radius.png)

"Incircle radius " r = A_t / sIncircle radius r=Ats

A(4,5), B(3,2), C(1,3)A(4,5),B(3,2),C(1,3)

a = sqrt((3-1)^2 + (2-3)^2) = 2.236a=(31)2+(23)2=2.236

b = sqrt((1-4)^2 + (3-5)^2) = 3.606b=(14)2+(35)2=3.606

c = sqrt((4-3)^2 + (5-2)^2) = 3.162c=(43)2+(52)2=3.162

"Semi-perimeter " s = (a + b + c) / 2 = (2.236 + 3.606 + 3.162) / 2 = 4,529Semi-perimeter s=a+b+c2=2.236+3.606+3.1622=4,529

"A_t = sqrt(s (s-a) s-b) (s-c))At=s(sa)sb(sc))

A_t = sqrt(4.529 (4.529-2.236) (4.529 - 3.606) (4.529 - 3.162)) = 3.62At=4.529(4.5292.236)(4.5293.606)(4.5293.162)=3.62

color(cyan)("Radius of inscribed circle " r = A_t / s = 3.62/ 4.529 = 0.8 " units"Radius of inscribed circle r=Ats=3.624.529=0.8 units