A triangle has corners at (5,2), (1,3), and (7,4). What is the radius of the triangle's inscribed circle?

1 Answer
Jun 21, 2018

Radius of incircle r=Ats=5.02246.52=0.77 units

Explanation:

![http://mathibayon.blogspot.com/2015/01/http://derivation-of-formula-for-radius-of-incircle.html](https://useruploads.socratic.org/qByQYJn5SEeAPjtKhB4j_incircle%20radius.png)

Incircle radius r=Ats

A(5,2),B(1,3),C(7,4)

a=(71)2+(43)2=37

b=(75)2+(42)2=8

c=(51)2+(23)2=17

Semi-perimeter s=a+b+c2=37+8+172=6.52

At=s(sa)sb(sc))

At=6.52(6.5237)(6.528)(6.5217)=5.0224

Radius of incircle r=Ats=5.02246.52=0.77 units