A triangle has corners at (5 ,2 ), (8 ,1 ), and (3 ,4 ). What is the area of the triangle's circumscribed circle?

1 Answer
Dec 7, 2016

"area is 42.5"pi

Explanation:

enter image source here

"the points A,B,C are on the circle."
"we can write the fallowing equations"

A(5,2)

x^2+y^2+ax+bx+c=0
5^2+2^2+5a+2b+c=0
25+4+5a+2b+c=0

5a+2b+c=-29" (1)"

B(8,1)

x^2+y^2+ax+bx+c=0
8^2+1^2+8a+b+c=0
64+1+8a+b+c=0

8a+b+c=-65" (2)"

C(3,4)

x^2+y^2+ax+bx+c=0
3^2+4^2+3a+4b+c=0
9+16+3a+4b+c=0

3a+4b+c=-25" (3)"

"let's add the equation (2) to (3)"
11a+5b+2c=-90" (4)"

"expand the equation (1) by 2"
10a+4b+2c=-58" (5)"

"subtract the equation (5) from (4)"

a+b=-32" (5)"

"subtract the equation (1) from (2)"

3a-b=-36" (6)"

"now add (5) to (6)"

4a=-68

color(red)(a=-17)

"use (5)"

-17+b=-32

b=-32+17

color(red)(b=-15)

"use (2)"

8(-17)-15+c=-65

-136-15+c=-65

c=-65+151

color(red)(c=86)

"r:radius of circle"

r=sqrt(a^2+b^2-4c)/2

r=sqrt(289+225-344)/2

r=sqrt(514-344)

r=sqrt(170)/2

r^2=170/4=42.5

area=pi*r^2

area=42.5pi