A triangle has corners at (5 ,8 ), (2 ,6 ), and (7 ,3 ). What is the area of the triangle's circumscribed circle?

1 Answer
Aug 11, 2018

The area of the triangle's circumscribed circle is:
Delta~~23.2499 ,sq.units

Explanation:

Let , triangle ABC be the triangle with corners at

A(5,8), B(2,6) and C(7,3) .

enter image source here

Using Distance formula ,we get

a=BC=sqrt((7-2)^2+(3-6)^2)=sqrt(25+9)=sqrt34

b=CA=sqrt((5-7)^2+(8-3)^2)=sqrt(4+25)=sqrt29

c=AB=sqrt((5-2)^2+(8-6)^2)=sqrt(9+4)=sqrt13

Using cosine Formula ,we get

cosB=(c^2+a^2-b^2)/(2ca)=(13+34-29)/(2sqrt13sqrt34)=18/(2sqrt442)=9/sqrt442

We know that,

sin^2B=1-cos^2B

=>sin^2B=1-9/442=433/442

=>sinB=(sqrt(433/442))to[because Bin(0 ^circ,180^circ)]

Using sine formula:we get

b/sinB=2R=>R=b/(2sinB)

=>R=sqrt29/(2(sqrt(433/442)))~~2.75

So , the area of the triangle's circumscribed circle is:

Delta=piR^2=pi*(sqrt29/(2(sqrt(433/442))))^2=pi((29xx442)/(4 xx433))

Delta~~23.2499 ,sq.units