A triangle has corners at (6 , 3 ), (3 ,5 ), and (2 ,9 ). What is the radius of the triangle's inscribed circle?

1 Answer
Jun 21, 2018

color(cyan)("Radius of incircle " r = A_t / s = 5 / 7.47 = 0.67 " units"

Explanation:

![http://mathibayon.blogspot.com/2015/01/http://derivation-of-formula-for-radius-of-incircle.html](https://useruploads.socratic.org/qByQYJn5SEeAPjtKhB4j_incircle%20radius.png)

"Incircle radius " r = A_t / s

A(6,3), B(3,5), C(2,9)

a = sqrt((3-2)^2 + (5-9)^2) = sqrt17

b = sqrt((6-2)^2 + (3-9)^2) = sqrt52

c = sqrt((6-3)^2 + ( 3-5)^2) = sqrt13

"Semi-perimeter " s = (a + b + c) / 2 = (sqrt17 + sqrt52 + sqrt13) / 2 = 7.47

"A_t = sqrt(s (s-a) s-b) (s-c))

A_t = sqrt(7.47 (7.47-sqrt17) (7.47 - sqrt52) (7.47 - sqrt13)) = 5

color(cyan)("Radius of incircle " r = A_t / s = 5 / 7.47 = 0.67 " units"