A triangle has corners at (6 , 6 ), (4 ,4 ), and (1 ,2 ). What is the radius of the triangle's inscribed circle?

1 Answer
Jul 29, 2018

color(blue)("Radius of in-circle "= r = A_t / s ~~ 0.1558

Explanation:

A(6, 6), B(4, 4), C(1, 2)

c = sqrt((6-4)^2 + (6-4)^2) ~~ sqrt 8

a= sqrt ((4-1)^2 + (4-2)^2) ~~ sqrt 13

b = sqrt((6-1)^2 + (6-2)^2) ~~ sqrt 41

Semi perimeter s = (a + b + c)/2

s = (sqrt 8 + sqrt 13 + sqrt 41 ) / 2 = 6.4186

Area of triangle A_t = sqrt(s (s-a) (s-b) (s-c)), " using Heron's formula"

A_t = sqrt(6.4186 (6.4186- sqrt 8) (6.4186-sqrt 13) (6.4186-sqrt 41)) ~~ 1

color(blue)("Radius of in-circle "= r = A_t / s = 1 / 6.4186 ~~ 0.1558