A triangle has corners at (7 , 9 ), (3 ,7 ), and (1 ,1 ). What is the radius of the triangle's inscribed circle?

1 Answer
Jul 29, 2018

In-circle radius color(chocolate)(r = A_t / s ~~ 0.9617 “ units”

Explanation:

A(7, 9), B(3 7), C(1, 1)

c = sqrt((7-3)^2 + (9-7)^2) ~~ sqrt 20

a= sqrt ((3-1)^2 + (7-1)^2) ~~ sqrt 40

b = sqrt((1-7)^2 + (1-9)^2) = 10

Semi perimeter s = (a + b + c)/2 = (sqrt 20 + sqrt 40 + 10) / 2 = 10.3983

Applying Heron’s formula,

A_t = sqrt(s (s-a) (s-b) (s-c)) = sqrt(10.3983 (10.3983- sqrt 20) (10.3983-sqrt 40) (10.3983 - 10)) ~~ 10

In-circle radius color(chocolate)(r = A_t / s = 10 / 10.3983 ~~ 0.9617 “ units”