A triangle has corners at (7,9), (3,7), and (4,8). What is the radius of the triangle's inscribed circle?

1 Answer
Feb 4, 2018

Incenter radius r=Ats=14.5243=0.221

Explanation:

enter image source here

Given the coordinates of the three vertices of a triangle ABC,
the coordinates of the incenter O are

Given A(7,9), B(3,7), C(4,8)

Using distance formula we can calculate a, b, c.

a=(43)2+(87)2=1.4142

b=(98)2+(74)2=3.1623

c=(79)2+(37)2=4.4721

Semi perimeter s=a+b+c2=1.4142+3.1623+4.47212=4.5243

Area of triangle At=s(sa)(sb)(sc)

At=4.5243(4.52431.4142)(4.52433.1623)(4.52434.4721)=1

Incenter radius r=Ats=14.5243=0.221