A triangle has corners at (8 ,7 ), (2 ,1 ), and (3 ,6 ). What is the area of the triangle's circumscribed circle?

1 Answer
Jun 21, 2018

A~~5.15

Explanation:

First we need to find the length of each side, to do this we need to use the distance formula on pairs of ordered pairs:

d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)

d=sqrt((8-2)^2+(7-1)^2)=6sqrt2

d=sqrt((2-3)^2+(1-6)^2)=sqrt26

d=sqrt((3-8)^2+(6-7)^2)=sqrt26

Now use the formula for a triangle inscribed circle:

s = (a+b+c)/2

r = sqrt(((s-a)(s-b)(s-c))/s)

Plug in our values:

s = (6sqrt2+sqrt26+sqrt26)/2

s~~9.34

r = sqrt(((9.34-6sqrt2)(9.34-sqrt26)(9.34-sqrt26))/9.34)

r~~1.28

A=pir^2

A=pi(1.28)^2

A~~5.15