A triangle has corners at (8 ,7 )(8,7), (2 ,1 )(2,1), and (5 ,6 )(5,6). What is the area of the triangle's circumscribed circle?

1 Answer
Jul 12, 2017

The area of the circle is =133.5u^2=133.5u2

Explanation:

To calculate the area of the circle, we must calculate the radius rr of the circle

Let the center of the circle be O=(a,b)O=(a,b)

Then,

(8-a)^2+(7-b)^2=r^2(8a)2+(7b)2=r2.......(1)(1)

(2-a)^2+(1-b)^2=r^2(2a)2+(1b)2=r2..........(2)(2)

(5-a)^2+(6-b)^2=r^2(5a)2+(6b)2=r2.........(3)(3)

We have 33 equations with 33 unknowns

From (1)(1) and (2)(2), we get

64-16a+a^2+49-14b+b^2=4-4a+a^2+1-2b+b^26416a+a2+4914b+b2=44a+a2+12b+b2

12a+12b=10812a+12b=108

a+b=9a+b=9.............(4)(4)

From (2)(2) and (3)(3), we get

4-4a+a^2+1-2b+b^2=25-10a+a^2+36-12b+b^244a+a2+12b+b2=2510a+a2+3612b+b2

6a+10b=566a+10b=56

3a+5b=283a+5b=28..............(5)(5)

From equations (4)(4) and (5)(5), we get

3(9-b)+5b=283(9b)+5b=28

27-3b+5b=28273b+5b=28

2b=12b=1, =>, b=1/2b=12

a=9-1/2a=912, =>, a=17/2a=172

The center of the circle is =(17/2,1/2)=(172,12)

r^2=(2-17/2)^2+(1-1/2)^2=(-13/2)^2+(1/2)^2r2=(2172)2+(112)2=(132)2+(12)2

=170/4=1704

=85/2=852

The area of the circle is

A=pi*r^2=pi*85/2=133.5A=πr2=π852=133.5