A triangle has corners at (9 ,3 ), (4 ,1 ), and (2 ,4 ). What is the area of the triangle's circumscribed circle?

1 Answer
Jul 11, 2018

The area of the triangle's circumscribed circle is=Delta=41.0096sq.units

Explanation:

Let , triangleABC" be the triangle with corners at "

A(9,3) , B(4,1) and C(2,4).

enter image source here

Using Distance formula ,we get

a=BC=sqrt((4-2)^2+(1-4)^2)=sqrt(4+9)=sqrt13

b=CA=sqrt((9-2)^2+(3-4)^2)=sqrt(49+1)=sqrt50

c=AB=sqrt((9-4)^2+(3-1)^2)=sqrt(25+4)=sqrt29

Using cosine Formula ,we get

cosA=(b^2+c^2-a^2)/(2bc)=(50+29-13)/(2sqrt50sqrt29)=33/(sqrt1450

We know that,

sin^2A=1-cos^2A

=>sin^2A=1-1089/1450=361/1450

=>sinA=19/sqrt1450to[because Ain(0 ^circ,180^circ)]

Using sine formula:we get

a/sinA=2R=>R=a/(2sinA)

=>R=sqrt13/(2 (19/sqrt1450))=(sqrt13xxsqrt1450)/(2*19)~~3.6130

So , the area of the triangle's circumscribed circle is:

Delta=piR^2=pi*(3.6130)^2~~41.0096 ,sq.units
....................................................................................................

Note:

If we take, R=3.61 then A=40.94