A triangle has corners at (9,4), (3,2), and (5,8). What is the area of the triangle's circumscribed circle?

1 Answer
Jun 29, 2018

Area of Circum circle AR=πR2=39.27 sq units

Explanation:

![http://mathibayon.blogspot.com/2015/01/derivation-of-formula-for-radius-of-circumcircle.html

Area of Triangle =AT=abc4R

A(9,4),B(3,2),C(5,8)

a=(53)2+(82)2=40=6.3246

b=(59)2+(84)2=32=5.6569

c=(93)2+(22)2=40=6.3246

Semi perimeter of the triangle s=a+b+c2=9.153

AT=s(sa)(sb)(sc))

AT=9.153(9.1536.3246)(9.1535.6569)(9.153(6.3246))=16

R=abc4AT=403240416=3.5355

Area of Circum circle AR=πR2=π3.53552=39.27 sq units