A triangle has corners at (9 ,4 )(9,4), (7 ,1 )(7,1), and (3 ,6 )(3,6). What is the area of the triangle's circumscribed circle?

1 Answer
Jun 13, 2017

The area of the circumscribed circle is =34.6u^2=34.6u2

Explanation:

To calculate the area of the circle, we must calculate the radius rr of the circle

Let the center of the circle be O=(a,b)O=(a,b)

Then,

(9-a)^2+(4-b)^2=r^2(9a)2+(4b)2=r2.......(1)(1)

(7-a)^2+(1-b)^2=r^2(7a)2+(1b)2=r2..........(2)(2)

(3-a)^2+(6-b)^2=r^2(3a)2+(6b)2=r2.........(3)(3)

We have 33 equations with 33 unknowns

From (1)(1) and (2)(2), we get

81-18a+a^2+16-8b+b^2=49-14a+a^2+1-2b+b^28118a+a2+168b+b2=4914a+a2+12b+b2

4a+6b=474a+6b=47

4a+6b=474a+6b=47.............(4)(4)

From (2)(2) and (3)(3), we get

49-14a+a^2+1-2b+b^2=9-6a+a^2+36-12b+b^24914a+a2+12b+b2=96a+a2+3612b+b2

8a-10b=58a10b=5

8a-10b=58a10b=5..............(5)(5)

From equations (4)(4) and (5)(5), we get

94-12b=5+10b9412b=5+10b

22b=8922b=89

b=89/22b=8922

4a=47-6*89/22=47-3*89/11=250/114a=4768922=4738911=25011, =>, a=250/44=125/22a=25044=12522

The center of the circle is =(125/22,89/22)=(12522,8922)

r^2=(3-125/22)^2+(6-89/22)^2=(59/22)^2+(43/22)^2r2=(312522)2+(68922)2=(5922)2+(4322)2

=5330/484=5330484

=2665/242=2665242

The area of the circle is

A=pi*r^2=2665/242*pi=34.6A=πr2=2665242π=34.6