A triangle has sides with lengths of 4, 9, and 7. What is the radius of the triangles inscribed circle?

1 Answer
Jan 27, 2016

Radius=(3sqrt5)/5

Explanation:

Radius of circle inscribed in a triangle=A/s

Where,

A=Area of triangle,

s=Semi-perimeter of triangle=(a+b+c)/2 Note a,b,c are sides of the triangle

So,s=(4+9+7)/2=20/2=10

We can find the area of triangle using Heron's formula:
Heron's formula:
Area = sqrt(s(s-a)(s-b)(s-c))

rarrArea=sqrt(10(10-4)(10-9)(10-7))

Area=sqrt(10(6)(1)(3))

Area=sqrt(10(18))

Area=sqrt180=6sqrt5

Radius=A/s=(6sqrt5)/10=(3sqrt5)/5