A triangle has two corners with angles of pi / 12 π12 and pi / 8 π8. If one side of the triangle has a length of 6 6, what is the largest possible area of the triangle?

1 Answer
Oct 19, 2017

Largest possible area of triangle = 262.5667

Explanation:

Three angles are pi/12, pi/8, (17pi)/24π12,π8,17π24

To get larges area, length 6 must correspond to least angle pi/12π12

6/ sin (pi/12) = b / sin (pi/8) = c / sin ((19pi)/24)6sin(π12)=bsin(π8)=csin(19π24)

b = (6 * sin (pi)/8) / sin (pi/12) = 8.8715b=6sin(π)8sin(π12)=8.8715

c = (6*sin ((19pi)/24)) / sin (pi/ 12) = 14.1124c=6sin(19π24)sin(π12)=14.1124

Semiperimeter s = ( a + b + c)/2 = (6+8.8715+14.1124)/2 = 14.492s=a+b+c2=6+8.8715+14.11242=14.492

s-a = 14.492 - 6 = 8.492sa=14.4926=8.492
s-b = 14.492 - 8.8715 = 5.6205sb=14.4928.8715=5.6205
s-c = 14.492 - 14.1124 = 0.3796sc=14.49214.1124=0.3796

Area of Delta = sqrt(s (s-a) (s-b) (s-c))

Area of Delta = sqrt(14.492 * 8.492 * 5.6205 * 0.3796) = **262.5667**