A triangle has two corners with angles of pi / 2 π2 and ( pi )/ 8 π8. If one side of the triangle has a length of 1 1, what is the largest possible area of the triangle?

1 Answer
Oct 11, 2017

Largest area possible =1.2071=1.2071

Explanation:

The three angles are #(pi/2), (pi/8), ((3pi)/8)
It’s a right angle triangle.

a/sin a=b/sin b=c/sin casina=bsinb=csinc
1/sin (pi/8)=b/sin ((3pi)/8)=c/sin(pi/2)1sin(π8)=bsin(3π8)=csin(π2)
Hypotenuse
c=sin(pi/2)/sin((pi)/8)=1/sin((pi)/8)c=sin(π2)sin(π8)=1sin(π8)
c=2.6131c=2.6131

b=sin((3pi)/8)/sin(pi/8)b=sin(3π8)sin(π8)
b=2.4142b=2.4142

Area =(a*b)/2=(1*2.4142)/2=1.2071=ab2=12.41422=1.2071