Sum of the three angles of a triangle is equal to 180^0 or pi^c1800orπc
/_A = (pi)/4 /_B = 3pi/8,∠A=π4∠B=3π8,
/_C = pi -(( pi/4) + (3pi/8)) =pi - (5pi/8) = (3pi)/8∠C=π−((π4)+(3π8))=π−(5π8)=3π8
To get the largest possible area, length 1 should correspond to the smallest /_A = pi/4∠A=π4
a / sin( /_A )= b / sin( /_B )= c / sin( /_C)asin(∠A)=bsin(∠B)=csin(∠C)
7 / sin (pi/4) = b / sin ((3pi)/8) = c / sin ((3pi)/8)7sin(π4)=bsin(3π8)=csin(3π8)
b = (7 * sin (3pi)/8) / sin (pi /4)b=7⋅sin(3π)8sin(π4)
b = 6.4672 / 0.7071 =color(blue)(9.1461) b=6.46720.7071=9.1461
c = (7*sin (3pi)/8) / sin (pi/4)c=7⋅sin(3π)8sin(π4)
c = color(blue)( 9.1461)c=9.1461
Semi-Perimeter s = (a + b + c )/2 =( 7 + 9.1461 + 9.1461)/2 = color (green)(12.6461)s=a+b+c2=7+9.1461+9.14612=12.6461
s - a = 12.6461 - 7 = 5.6461s−a=12.6461−7=5.6461
s - b = 12.6461 - 9.1461 = 3.5s−b=12.6461−9.1461=3.5
s - c = 12.6461 - 9.1461 = 3.5s−c=12.6461−9.1461=3.5
Area of Delta ABC = sqrt(s (s-a) (s - b) (s - c))
= sqrt ( 12.6461 * 5.6461 * 3.5 * 3.5) = 29.5747