A triangle has two corners with angles of pi / 4 π4 and (3 pi )/ 8 3π8. If one side of the triangle has a length of 7 7, what is the largest possible area of the triangle?

1 Answer
Dec 2, 2017

Largest possible area of the triangle = color(blue)(29.5747)=29.5747

Explanation:

Sum of the three angles of a triangle is equal to 180^0 or pi^c1800orπc

/_A = (pi)/4 /_B = 3pi/8,A=π4B=3π8,
/_C = pi -(( pi/4) + (3pi/8)) =pi - (5pi/8) = (3pi)/8C=π((π4)+(3π8))=π(5π8)=3π8

To get the largest possible area, length 1 should correspond to the smallest /_A = pi/4A=π4

a / sin( /_A )= b / sin( /_B )= c / sin( /_C)asin(A)=bsin(B)=csin(C)

7 / sin (pi/4) = b / sin ((3pi)/8) = c / sin ((3pi)/8)7sin(π4)=bsin(3π8)=csin(3π8)

b = (7 * sin (3pi)/8) / sin (pi /4)b=7sin(3π)8sin(π4)
b = 6.4672 / 0.7071 =color(blue)(9.1461) b=6.46720.7071=9.1461

c = (7*sin (3pi)/8) / sin (pi/4)c=7sin(3π)8sin(π4)
c = color(blue)( 9.1461)c=9.1461

Semi-Perimeter s = (a + b + c )/2 =( 7 + 9.1461 + 9.1461)/2 = color (green)(12.6461)s=a+b+c2=7+9.1461+9.14612=12.6461

s - a = 12.6461 - 7 = 5.6461sa=12.64617=5.6461
s - b = 12.6461 - 9.1461 = 3.5sb=12.64619.1461=3.5
s - c = 12.6461 - 9.1461 = 3.5sc=12.64619.1461=3.5

Area of Delta ABC = sqrt(s (s-a) (s - b) (s - c))
= sqrt ( 12.6461 * 5.6461 * 3.5 * 3.5) = 29.5747