The area of the triangle is A=9A=9
The angle hatA=1/12piˆA=112π
The angle hatB=1/4piˆB=14π
The angle hatC=pi-(1/12pi+1/4pi)=2/3piˆC=π−(112π+14π)=23π
The sine rule is
a/(sin hat (A))=b/sin hat (B)=c/sin hat (C)=kasinˆA=bsinˆB=csinˆC=k
So,
a=ksin hatAa=ksinˆA
b=ksin hatBb=ksinˆB
c=ksin hatCc=ksinˆC
Let the height of the triangle be =h=h from the vertex AA to the opposite side BCBC
The area of the triangle is
A=1/2a*hA=12a⋅h
But,
h=csin hatBh=csinˆB
So,
A=1/2ksin hatA*csin hatB=1/2ksin hatA*ksin hatC*sin hatBA=12ksinˆA⋅csinˆB=12ksinˆA⋅ksinˆC⋅sinˆB
A=1/2k^2*sin hatA*sin hatB*sin hatCA=12k2⋅sinˆA⋅sinˆB⋅sinˆC
k^2=(2A)/(sin hatA*sin hatB*sin hatC)k2=2AsinˆA⋅sinˆB⋅sinˆC
k=sqrt((2A)/(sin hatA*sin hatB*sin hatC))k=√2AsinˆA⋅sinˆB⋅sinˆC
=sqrt(18/(sin(1/12pi)*sin(1/4pi)*sin(2/3pi)))=
⎷18sin(112π)⋅sin(14π)⋅sin(23π)
=10.66=10.66
Therefore,
a=10.66sin(1/12pi)=2.76a=10.66sin(112π)=2.76
b=10.66sin(1/4pi)=7.54b=10.66sin(14π)=7.54
c=10.666sin(2/3pi)=9.23c=10.666sin(23π)=9.23
The radius of the incircle is =r=r
1/2*r*(a+b+c)=A12⋅r⋅(a+b+c)=A
r=(2A)/(a+b+c)r=2Aa+b+c
=18/(19.53)=0.92=1819.53=0.92
The area of the incircle is
area=pi*r^2=pi*0.92^2=2.67u^2area=π⋅r2=π⋅0.922=2.67u2