The area of the triangle is A=6A=6
The angle hatA=1/12piˆA=112π
The angle hatB=3/8piˆB=38π
The angle hatC=pi-(2/24pi+9/24pi)=13/24piˆC=π−(224π+924π)=1324π
The sine rule is
a/sinA=b/sinB=c/sinC=kasinA=bsinB=csinC=k
So,
a=ksinAa=ksinA
b=ksinBb=ksinB
c=ksinCc=ksinC
Let the height of the triangle be =h=h from the vertex AA to the opposite side BCBC
The area of the triangle is
A=1/2a*hA=12a⋅h
But,
h=csinBh=csinB
So,
A=1/2ksinA*csinB=1/2ksinA*ksinC*sinBA=12ksinA⋅csinB=12ksinA⋅ksinC⋅sinB
A=1/2k^2*sinA*sinB*sinCA=12k2⋅sinA⋅sinB⋅sinC
k^2=(2A)/(sinA*sinB*sinC)k2=2AsinA⋅sinB⋅sinC
k=sqrt((2A)/(sinA*sinB*sinC))k=√2AsinA⋅sinB⋅sinC
=sqrt(12/(sin(pi/12)*sin(3/8pi)*sin(13/24pi)))=
⎷12sin(π12)⋅sin(38π)⋅sin(1324π)
=7.11=7.11
Therefore,
a=7.11sin(1/12pi)=1.84a=7.11sin(112π)=1.84
b=7.11sin(3/8pi)=6.57b=7.11sin(38π)=6.57
c=7.11sin(13/24pi)=7.05c=7.11sin(1324π)=7.05
The radius of the incircle is =r=r
1/2*r*(a+b+c)=A12⋅r⋅(a+b+c)=A
r=(2A)/(a+b+c)r=2Aa+b+c
=12/(15.5)=0.78=1215.5=0.78
The area of the incircle is
area=pi*r^2=pi*0.78^2=1.89u^2area=π⋅r2=π⋅0.782=1.89u2