A triangle has vertices A, B, and C. Vertex A has an angle of pi/12 π12, vertex B has an angle of (5pi)/8 5π8, and the triangle's area is 19 19. What is the area of the triangle's incircle?

1 Answer

5.7975\ \text{unit}^2

Explanation:

Given that in \Delta ABC, A=\pi/12, B={5\pi}/8

C=\pi-A-B

=\pi-\pi/12-{5\pi}/8

={7\pi}/24

from sine in \Delta ABC, we have

\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}

\frac{a}{\sin(\pi/12)}=\frac{b}{\sin ({5\pi}/8)}=\frac{c}{\sin ({7\pi}/24)}=k\ \text{let}

a=k\sin(\pi/12)=0.259k

b=k\sin({5\pi}/8)=0.924k

c=k\sin({\pi}/24)=0.793k

s=\frac{a+b+c}{2}

=\frac{0.259k+0.924k+0.793k}{2}=0.988k

Area of \Delta ABC from Hero's formula

\Delta=\sqrt{s(s-a)(s-b)(s-c)}

19=\sqrt{0.988k(0.988k-0.259k)(0.988k-0.924k)(0.988k-0.793k)}

19=0.09481k^2

k^2=200.4029

Now, the in-radius (r) of \Delta ABC

r=\frac{\Delta}{s}

r=\frac{19}{0.988k}

Hence, the area of inscribed circle of \Delta ABC

=\pi r^2

=\pi (19/{0.988k})^2

=\frac{361\pi}{0.976144k^2}

=\frac{1161.8316}{200.4029}\quad (\because k^2=200.4029)

=5.7975\ \text{unit}^2