The area of the triangle is A=5A=5
The angle hatA=1/12piˆA=112π
The angle hatB=3/4piˆB=34π
The angle hatC=pi-(1/12pi+3/4pi)=1/6piˆC=π−(112π+34π)=16π
The sine rule is
a/(sin hat (A))=b/sin hat (B)=c/sin hat (C)=kasinˆA=bsinˆB=csinˆC=k
So,
a=ksin hatAa=ksinˆA
b=ksin hatBb=ksinˆB
c=ksin hatCc=ksinˆC
Let the height of the triangle be =h=h from the vertex AA to the opposite side BCBC
The area of the triangle is
A=1/2a*hA=12a⋅h
But,
h=csin hatBh=csinˆB
So,
A=1/2ksin hatA*csin hatB=1/2ksin hatA*ksin hatC*sin hatBA=12ksinˆA⋅csinˆB=12ksinˆA⋅ksinˆC⋅sinˆB
A=1/2k^2*sin hatA*sin hatB*sin hatCA=12k2⋅sinˆA⋅sinˆB⋅sinˆC
k^2=(2A)/(sin hatA*sin hatB*sin hatC)k2=2AsinˆA⋅sinˆB⋅sinˆC
k=sqrt((2A)/(sin hatA*sin hatB*sin hatC))k=√2AsinˆA⋅sinˆB⋅sinˆC
=sqrt(10/(sin(1/12pi)*sin(3/4pi)*sin(1/6pi)))=
⎷10sin(112π)⋅sin(34π)⋅sin(16π)
=10.45=10.45
Therefore,
a=10.45sin(1/12pi)=2.71a=10.45sin(112π)=2.71
b=10.45sin(3/4pi)=7.39b=10.45sin(34π)=7.39
c=10.45sin(1/6pi)=5.23c=10.45sin(16π)=5.23
The radius of the incircle is =r=r
1/2*r*(a+b+c)=A12⋅r⋅(a+b+c)=A
r=(2A)/(a+b+c)r=2Aa+b+c
=10/(15.33)=0.65=1015.33=0.65
The area of the incircle is
area=pi*r^2=pi*0.65^2=1.34u^2area=π⋅r2=π⋅0.652=1.34u2