A triangle has vertices A, B, and C. Vertex A has an angle of pi/12 π12, vertex B has an angle of (3pi)/4 3π4, and the triangle's area is 5 5. What is the area of the triangle's incircle?

1 Answer
Jul 15, 2017

The area of the incircle is =1.34u^2=1.34u2

Explanation:

enter image source here

The area of the triangle is A=5A=5

The angle hatA=1/12piˆA=112π

The angle hatB=3/4piˆB=34π

The angle hatC=pi-(1/12pi+3/4pi)=1/6piˆC=π(112π+34π)=16π

The sine rule is

a/(sin hat (A))=b/sin hat (B)=c/sin hat (C)=kasinˆA=bsinˆB=csinˆC=k

So,

a=ksin hatAa=ksinˆA

b=ksin hatBb=ksinˆB

c=ksin hatCc=ksinˆC

Let the height of the triangle be =h=h from the vertex AA to the opposite side BCBC

The area of the triangle is

A=1/2a*hA=12ah

But,

h=csin hatBh=csinˆB

So,

A=1/2ksin hatA*csin hatB=1/2ksin hatA*ksin hatC*sin hatBA=12ksinˆAcsinˆB=12ksinˆAksinˆCsinˆB

A=1/2k^2*sin hatA*sin hatB*sin hatCA=12k2sinˆAsinˆBsinˆC

k^2=(2A)/(sin hatA*sin hatB*sin hatC)k2=2AsinˆAsinˆBsinˆC

k=sqrt((2A)/(sin hatA*sin hatB*sin hatC))k=2AsinˆAsinˆBsinˆC

=sqrt(10/(sin(1/12pi)*sin(3/4pi)*sin(1/6pi)))= 10sin(112π)sin(34π)sin(16π)

=10.45=10.45

Therefore,

a=10.45sin(1/12pi)=2.71a=10.45sin(112π)=2.71

b=10.45sin(3/4pi)=7.39b=10.45sin(34π)=7.39

c=10.45sin(1/6pi)=5.23c=10.45sin(16π)=5.23

The radius of the incircle is =r=r

1/2*r*(a+b+c)=A12r(a+b+c)=A

r=(2A)/(a+b+c)r=2Aa+b+c

=10/(15.33)=0.65=1015.33=0.65

The area of the incircle is

area=pi*r^2=pi*0.65^2=1.34u^2area=πr2=π0.652=1.34u2