A triangle has vertices A, B, and C. Vertex A has an angle of pi/2 π2, vertex B has an angle of ( pi)/4 π4, and the triangle's area is 3 3. What is the area of the triangle's incircle?

1 Answer
Jul 6, 2017

The area of the incircle is =1.62u^2=1.62u2

Explanation:

enter image source here

The area of the triangle is A=3A=3

The angle hatA=1/2piˆA=12π

The angle hatB=1/4piˆB=14π

The angle hatC=pi-(1/2pi+1/4pi)=1/4piˆC=π(12π+14π)=14π

The sine rule is

a/(sin hat (A))=b/sin hat (B)=c/sin hat (C)=kasinˆA=bsinˆB=csinˆC=k

So,

a=ksin hatAa=ksinˆA

b=ksin hatBb=ksinˆB

c=ksin hatCc=ksinˆC

Let the height of the triangle be =h=h from the vertex AA to the opposite side BCBC

The area of the triangle is

A=1/2a*hA=12ah

But,

h=csin hatBh=csinˆB

So,

A=1/2ksin hatA*csin hatB=1/2ksin hatA*ksin hatC*sin hatBA=12ksinˆAcsinˆB=12ksinˆAksinˆCsinˆB

A=1/2k^2*sin hatA*sin hatB*sin hatCA=12k2sinˆAsinˆBsinˆC

k^2=(2A)/(sin hatA*sin hatB*sin hatC)k2=2AsinˆAsinˆBsinˆC

k=sqrt((2A)/(sin hatA*sin hatB*sin hatC))k=2AsinˆAsinˆBsinˆC

=sqrt(6/(sin(1/2pi)*sin(1/4pi)*sin(1/4pi)))=6sin(12π)sin(14π)sin(14π)

=3.46=3.46

Therefore,

a=3.46sin(1/2pi)=3.46a=3.46sin(12π)=3.46

b=3.46sin(1/4pi)=2.45b=3.46sin(14π)=2.45

c=3.46sin(1/4pi)=2.45c=3.46sin(14π)=2.45

The radius of the incircle is =r=r

1/2*r*(a+b+c)=A12r(a+b+c)=A

r=(2A)/(a+b+c)r=2Aa+b+c

=6/(8.36)=0.72=68.36=0.72

The area of the incircle is

area=pi*r^2=pi*0.72^2=1.62u^2area=πr2=π0.722=1.62u2