The area of the triangle is A=3A=3
The angle hatA=1/2piˆA=12π
The angle hatB=1/4piˆB=14π
The angle hatC=pi-(1/2pi+1/4pi)=1/4piˆC=π−(12π+14π)=14π
The sine rule is
a/(sin hat (A))=b/sin hat (B)=c/sin hat (C)=kasinˆA=bsinˆB=csinˆC=k
So,
a=ksin hatAa=ksinˆA
b=ksin hatBb=ksinˆB
c=ksin hatCc=ksinˆC
Let the height of the triangle be =h=h from the vertex AA to the opposite side BCBC
The area of the triangle is
A=1/2a*hA=12a⋅h
But,
h=csin hatBh=csinˆB
So,
A=1/2ksin hatA*csin hatB=1/2ksin hatA*ksin hatC*sin hatBA=12ksinˆA⋅csinˆB=12ksinˆA⋅ksinˆC⋅sinˆB
A=1/2k^2*sin hatA*sin hatB*sin hatCA=12k2⋅sinˆA⋅sinˆB⋅sinˆC
k^2=(2A)/(sin hatA*sin hatB*sin hatC)k2=2AsinˆA⋅sinˆB⋅sinˆC
k=sqrt((2A)/(sin hatA*sin hatB*sin hatC))k=√2AsinˆA⋅sinˆB⋅sinˆC
=sqrt(6/(sin(1/2pi)*sin(1/4pi)*sin(1/4pi)))=√6sin(12π)⋅sin(14π)⋅sin(14π)
=3.46=3.46
Therefore,
a=3.46sin(1/2pi)=3.46a=3.46sin(12π)=3.46
b=3.46sin(1/4pi)=2.45b=3.46sin(14π)=2.45
c=3.46sin(1/4pi)=2.45c=3.46sin(14π)=2.45
The radius of the incircle is =r=r
1/2*r*(a+b+c)=A12⋅r⋅(a+b+c)=A
r=(2A)/(a+b+c)r=2Aa+b+c
=6/(8.36)=0.72=68.36=0.72
The area of the incircle is
area=pi*r^2=pi*0.72^2=1.62u^2area=π⋅r2=π⋅0.722=1.62u2