Given A = pi /3, B = (5pi) / 12, C = pi - A - B = pi / 4A=π3,B=5π12,C=π−A−B=π4
Area of triangle A_t = 16At=16
a*b = A_t / ((1/2) sin C) = 16 / (0.5 sin (pi/3)) ~~ 36.95a⋅b=At(12)sinC=160.5sin(π3)≈36.95
Similarly,
b*c = 16 / (0.5 sin A) = 16 / (0.5 * sin ((5pi)/12)) ~~ 33.13b⋅c=160.5sinA=160.5⋅sin(5π12)≈33.13
c*a = 16 / (0.5 sin B) = 16 / (0.5 * sin (pi/4)) ~~ 45.25c⋅a=160.5sinB=160.5⋅sin(π4)≈45.25
(ab * bc * ca) = (abc)^2 = 36.95 * 33.13 * 45.25 = 55392.95(ab⋅bc⋅ca)=(abc)2=36.95⋅33.13⋅45.25=55392.95
abc = sqrt(55392.95) ~~ 235 36abc=√55392.95≈23536
a = (abc) / (bc) = 235.36 / 33.13 ~~ 7.1a=abcbc=235.3633.13≈7.1
b = (abc) / (ca) = 235.36 / 45.25 ~~ 5.2b=abcca=235.3645.25≈5.2
c = (abc) / (ab) = 235.36 / 36.95 ~~ 6.37c=abcab=235.3636.95≈6.37
Semi perimeter S/ 2 = (a + b + c) / 2 = (7.1 + 5.2 + 6.37) / 2 = 9.34S2=a+b+c2=7.1+5.2+6.372=9.34
In radius r = A_t / (S/2) = 16 / 9.34 = 1.71r=AtS2=169.34=1.71
Area of in circle A_i = pi r^2 = pi * (1.71)^2 = color(green)(9.19)Ai=πr2=π⋅(1.71)2=9.19