The area of the triangle is A=3A=3
The angle hatA=1/8piˆA=18π
The angle hatB=1/6piˆB=16π
The angle hatC=pi-(1/8pi+1/6pi)=17/24piˆC=π−(18π+16π)=1724π
The sine rule is
a/sinA=b/sinB=c/sinC=kasinA=bsinB=csinC=k
So,
a=ksinAa=ksinA
b=ksinBb=ksinB
c=ksinCc=ksinC
Let the height of the triangle be =h=h from the vertex AA to the opposite side BCBC
The area of the triangle is
A=1/2a*hA=12a⋅h
But,
h=csinBh=csinB
So,
A=1/2ksinA*csinB=1/2ksinA*ksinC*sinBA=12ksinA⋅csinB=12ksinA⋅ksinC⋅sinB
A=1/2k^2*sinA*sinB*sinCA=12k2⋅sinA⋅sinB⋅sinC
k^2=(2A)/(sinA*sinB*sinC)k2=2AsinA⋅sinB⋅sinC
k=sqrt((2A)/(sinA*sinB*sinC))k=√2AsinA⋅sinB⋅sinC
=sqrt(6/(sin(pi/8)*sin(1/6pi)*sin(17/24pi)))=
⎷6sin(π8)⋅sin(16π)⋅sin(1724π)
=6.29=6.29
Therefore,
a=6.29sin(1/8pi)=2.41a=6.29sin(18π)=2.41
b=6.29sin(1/6pi)=3.15b=6.29sin(16π)=3.15
c=6.29sin(17/24pi)=4.99c=6.29sin(1724π)=4.99
Observe in the figure above that joining incenter with the three vertices A,BA,B and CC results in three triangles, whose bases are a,ba,b and cc and height is rr, the radius of incenter and therefore the sum of the area of these triangles is area of DeltaABC.
Hence we have, 1/2*r*(a+b+c)=A
r=(2A)/(a+b+c)
=6/(10.55)=0.57
The area of the incircle is
area=pi*r^2=pi*0.57^2=1.02 square units.