A triangle has vertices A, B, and C. Vertex A has an angle of pi/8 π8, vertex B has an angle of ( pi)/4 π4, and the triangle's area is 48 48. What is the area of the triangle's incircle?

1 Answer

18.588\ \text{unit}^2

Explanation:

Given that in \Delta ABC, A=\pi/8, B=\pi/4

C=\pi-A-B

=\pi-\pi/8-\pi/4

={5\pi}/8

from sine in \Delta ABC, we have

\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}

\frac{a}{\sin(\pi/8)}=\frac{b}{\sin (\pi/4)}=\frac{c}{\sin ({5\pi}/8)}=k\ \text{let}

a=k\sin(\pi/8)=0.383k

b=k\sin(\pi/4)=0.707k

c=k\sin({5\pi}/8)=0.924k

s=\frac{a+b+c}{2}

=\frac{0.383k+0.707k+0.924k}{2}=1.007k

Area of \Delta ABC from Hero's formula

\Delta=\sqrt{s(s-a)(s-b)(s-c)}

48=\sqrt{1.007k(1.007k-0.383k)(1.007k-0.707k)(1.007k-0.924k)}

48=0.125k^2

k^2=384

Noe, the in-radius (r) of \Delta ABC

r=\frac{\Delta}{s}

r=\frac{48}{1.007k}

Hence, the area of inscribed circle of \Delta ABC

=\pi r^2

=\pi (48/{1.007k})^2

=\frac{2304\pi}{1.007^2k^2}

=\frac{2304\pi}{1.007^2\cdot 384}\quad (\because k^2=384)

=18.588\ \text{unit}^2