A triangle has vertices A, B, and C. Vertex A has an angle of pi/8 π8, vertex B has an angle of (7pi)/12 7π12, and the triangle's area is 22 22. What is the area of the triangle's incircle?

1 Answer
Aug 9, 2018

Area of Incircle A_r = pi * (22/13.13) ~~ 541.6 Ar=π(2213.13)541.6 sq.units

Explanation:

hat A = pi / 8, hat B = (7pi)/12, hat C = (7pi)/24, A_t = 22ˆA=π8,ˆB=7π12,ˆC=7π24,At=22

Incircle radius r = A_t / sr=Ats where s is the semi perimeter of the triangle.

Area of triangle A_t = (1/2) bc sin A = (1/2) ac sin B = (1/2) ab sin CAt=(12)bcsinA=(12)acsinB=(12)absinC

bc = (2 A_t) / sin A = (2*22)/sin (pi/8) = 114.98bc=2AtsinA=222sin(π8)=114.98

ca = (2 A_t) / sin A = (2*22)/sin ((7pi)/12) = 45.55ca=2AtsinA=222sin(7π12)=45.55

ab = (2 A_t) / sin A = (2*22)/sin ((7pi)/24) = 55.46ab=2AtsinA=222sin(7π24)=55.46

sqrt(ab * bc * ca) = sqrt(114.98 * 45.55 * 55.46) = 538.95abbcca=114.9845.5555.46=538.95

b = sqrt(ab * bc * ca) / (ca) = 538.95 / 45.45 ~~ 11.86b=abbccaca=538.9545.4511.86

c = sqrt(ab * bc * ca) / (ab) = 538.95 / 55.46 ~~ 9.72c=abbccaab=538.9555.469.72

a = sqrt(ab * bc * ca) / (bc) = 538.95 / 114.98 ~~ 4.69a=abbccabc=538.95114.984.69

s = (a + b + c) / 2 = 13.13s=a+b+c2=13.13

Incircle radius r = A_t / s = 22 / 13.13 r=Ats=2213.13

Area of Incircle A_r = pi * (22/13.13) ~~ 541.6 Ar=π(2213.13)541.6 sq.units