hat A = pi / 8, hat B = (7pi)/12, hat C = (7pi)/24, A_t = 22ˆA=π8,ˆB=7π12,ˆC=7π24,At=22
Incircle radius r = A_t / sr=Ats where s is the semi perimeter of the triangle.
Area of triangle A_t = (1/2) bc sin A = (1/2) ac sin B = (1/2) ab sin CAt=(12)bcsinA=(12)acsinB=(12)absinC
bc = (2 A_t) / sin A = (2*22)/sin (pi/8) = 114.98bc=2AtsinA=2⋅22sin(π8)=114.98
ca = (2 A_t) / sin A = (2*22)/sin ((7pi)/12) = 45.55ca=2AtsinA=2⋅22sin(7π12)=45.55
ab = (2 A_t) / sin A = (2*22)/sin ((7pi)/24) = 55.46ab=2AtsinA=2⋅22sin(7π24)=55.46
sqrt(ab * bc * ca) = sqrt(114.98 * 45.55 * 55.46) = 538.95√ab⋅bc⋅ca=√114.98⋅45.55⋅55.46=538.95
b = sqrt(ab * bc * ca) / (ca) = 538.95 / 45.45 ~~ 11.86b=√ab⋅bc⋅caca=538.9545.45≈11.86
c = sqrt(ab * bc * ca) / (ab) = 538.95 / 55.46 ~~ 9.72c=√ab⋅bc⋅caab=538.9555.46≈9.72
a = sqrt(ab * bc * ca) / (bc) = 538.95 / 114.98 ~~ 4.69a=√ab⋅bc⋅cabc=538.95114.98≈4.69
s = (a + b + c) / 2 = 13.13s=a+b+c2=13.13
Incircle radius r = A_t / s = 22 / 13.13 r=Ats=2213.13
Area of Incircle A_r = pi * (22/13.13) ~~ 541.6 Ar=π⋅(2213.13)≈541.6 sq.units