A triangle is defined by the three points: A=(7,9) B=(8,8) C=(6,6). How to determine all three angles in the triangle (in radians) ?

1 Answer

A=63.435^\circA=63.435, B=90^\circB=90, C=26.565^\circC=26.565

Explanation:

The lengths of sides of triangle having vertices A(7, 9)A(7,9), B(8,8)B(8,8) & C(6, 6)C(6,6) are given as

AB=\sqrt{(7-8)^2+(9-8)^2}=\sqrt2AB=(78)2+(98)2=2

BC=\sqrt{(8-6)^2+(8-6)^2}=2\sqrt2BC=(86)2+(86)2=22

AC=\sqrt{(7-6)^2+(9-6)^2}=\sqrt{10}AC=(76)2+(96)2=10

Now, using Cosine rule in \Delta ABC as follows

\cos A=\frac{AB^2+AC^2-BC^2}{2(AB)(AC)}

\cos A=\frac{(\sqrt2)^2+(\sqrt10)^2-(2\sqrt2)^2}{2(\sqrt2)(\sqrt10)}

\cos A=1/\sqrt5

A=\cos^{-1}(1/\sqrt5)=63.435^\circ

Similarly, we get

\cos B=\frac{AB^2+BC^2-AC^2}{2(AB)(BC)}

\cos B=\frac{(\sqrt2)^2+(2\sqrt2)^2-(\sqrt10)^2}{2(\sqrt2)(2\sqrt2)}

\cos B=0

B=90^\circ

\cos C=\frac{AC^2+BC^2-AB^2}{2(AC)(BC)}

\cos C=\frac{(\sqrt10)^2+(2\sqrt2)^2-(\sqrt2)^2}{2(\sqrt10)(2\sqrt2)}

\cos C=2/\sqrt5

C=\cos^{-1}(2/\sqrt5)=26.565^\circ