A truck pulls boxes up an incline plane. The truck can exert a maximum force of 3,500 N3,500N. If the plane's incline is (5 pi )/12 5π12 and the coefficient of friction is 7/12 712, what is the maximum mass that can be pulled up at one time?

1 Answer
Jan 17, 2017

Maximum mass is 438.24 \ kg (2dp)

Explanation:

enter image source here

For our diagram, m="mass "kg, theta=(5pi)/12

If we apply Newton's Second Law up perpendicular to the plane we get:

R - mg cos theta = 0
:. R = mg cos((5pi)/12) \ \ N

With a maximum driving force of 3500\ N upwards (along the plane) D=3500. If we Apply Newton's Second Law up parallel to the plane we get:

D + F - mg sin theta = 0
:. 3500 +F - mg sin ((5pi)/12) = 0
:. F = mg sin ((5pi)/12) - 3500

And the friction is related to the Reaction (Normal) Force by

F le mu R
:. mg sin ((5pi)/12) - 3500 le 7/12 (mg cos((5pi)/12) )
:. 12mg sin ((5pi)/12) - 42000 le 7mg cos((5pi)/12)
:. 12mg sin ((5pi)/12) - 7mg cos((5pi)/12) le 42000
:. mg(12 sin ((5pi)/12) - 7 cos((5pi)/12)) le 42000
:. m le 42000/((12 sin ((5pi)/12) - 7 cos((5pi)/12))g)
:. m le 438.2400291 ...