An aq soln of NaH_2PO_4NaH2PO4 is treated with a mixture of ammonium & magnesium ions to precipitate Mg(NH_4)PO_4. 6H_2OMg(NH4)PO4.6H2O & is heated to Mg_2P_2O_7Mg2P2O7 which is weighed. A soln of NaH_2PO_4NaH2PO4 gives 1.054 g of Mg_2P_2O_7Mg2P2O7. What's original weight of NaH_2PO_4NaH2PO4?

1 Answer
Jul 17, 2015

The original mass of "NaH"_2"PO"_4NaH2PO4 was 1.136 g.

Explanation:

It is tempting to write out the balanced equations for the reactions, but you can avoid doing this.

You know that phosphorus atoms must be conserved, so the overall reaction must be

"2NaH"_2"PO"_4 + … → "Mg"_2"P"_2"O"_7 + …2NaH2PO4+Mg2P2O7+

Now we can do the usual stoichiometry calculations and convert

"grams of Mg"_2"P"_2"O"_7 → "moles of Mg"_2"P"_2"O"_7 → "moles of NaH"_2"PO"_4 → "grams of NaH"_2"PO"_4grams of Mg2P2O7moles of Mg2P2O7moles of NaH2PO4grams of NaH2PO4

1.054 cancel("g Mg₂P₂O₇") × (1 cancel("mol Mg₂P₂O₇"))/(222.55 cancel("g Mg₂P₂O₇")) × (2 cancel("mol NaH₂PO₄"))/(1 cancel("mol Mg₂P₂O₇")) × ("119.98 g NaH"_2"PO"_4)/(1 cancel("mol NaH₂PO₄")) = "1.136 g NaH"_2"PO"_4

Addendum

The balanced equations are

"2×(NaH"_2"PO"_4 + "NH"_4^+ + "Mg"^(2+) + "6H"_2"O" → cancel("Mg(NH₄)PO₄·6H₂O") + "Na"^+ + "2H"^+)
1×(cancel("2Mg(NH₄)PO₄·6H₂O") → "Mg"_2"P"_2"O"_7 + "2NH"_3 + "13H"_2"O")
bar("2NaH"_2"PO"_4 + "2NH"_4^+ + "2Mg"^(2+) → "Mg"_2"P"_2"O"_7 + "2NH"_3 + "2Na"^+ + "4H"^+ + "H"_2"O")