An object, previously at rest, slides 15 m down a ramp, with an incline of pi/3 , and then slides horizontally on the floor for another 10 m. If the ramp and floor are made of the same material, what is the material's kinetic friction coefficient?

1 Answer
Aug 17, 2017

mu_k~~0.742

Explanation:

Since the object begins from rest at the top of the ramp and comes to rest on the floor below, we know that all of the gravitational potential energy originally possessed by the object is lost to friction by the time it comes to a stop.

Therefore, we know that the work done by friction, or the energy lost to friction, is equal to the object's gravitational potential energy at the top of the ramp.

Gravitational potential energy:

U_g=mgh

Work done by kinetic friction:

W_f=f_k*d

Therefore, we have:

=>mgh=W_f

=>color(blue)(mgh=f_k*d)

It is necessary to break up the right side into a sum of the work done by friction while the object is on the ramp as well as when it is sliding across the floor. Let's call the distance down the ramp r, and the distance across the floor d to avoid confusion.

mgh=W_(f" total")

mgh=W_(f " ramp")+W_(f" floor")

=>color(blue)(mgh=f_k*r+f_k*d)

We have the following information:

  • |->r=15"m"
  • |->theta=pi/3
  • |->d=10"m"

Diagram:

enter image source here

where vecn is the normal force, vecf_k is the force of kinetic friction, and F_g is the force of gravity, decomposed into its parallel (x, horizontal) and perpendicular (y, vertical) components.

We can find h, the height of the ramp, using basic trigonometry. We have an angle of pi/3 and a hypotenuse of 15, so:

sin(theta)="opposite"/"hypotenuse"

=>sin(pi/3)=h/15

=>h=15sin(pi/3)

Now let's take inventory of the forces acting on the object while on the ramp and on the floor.

Ramp:

color(blue)(sumF_x=F_gsin(theta)-f_k=ma_x)

color(blue)(sumF_y=n-F_gcos(theta)=0)

  • Note that there is no net force perpendicular and therefore no acceleration in that direction (dynamic equilibrium).

We can solve for n:

n=F_gcos(theta)

=>=mgcos(theta)

Floor:

color(darkblue)(sumF_x=-f_k=ma_x)

color(darkblue)(sumF_y=n-F_g=0)

Again, we can solve for n, and we find that n=mg.

Substituting back in...

mgh=mu_kmgcos(theta)r+mu_kmgd

cancelcolor(darkblue)(m)cancelcolor(blue)(g)h=mu_kcancelcolor(darkblue)(m)cancelcolor(blue)(g)cos(theta)r+mu_kcancelcolor(darkblue)(m)cancelcolor(blue)(g)d

h=mu_kcos(theta)r+mu_kd

Solve for mu_k:

h=mu_k(cos(theta)r+d)

color(blue)(mu_k=h/(cos(theta)r+d))

And now, substituting in our known values:

mu_k=(15sin(pi/3))/(15cos(pi/3)+10)

mu_k~~0.742

- - - - - - - - -

  • Note: I give a more detailed explanation of a similar problem here if you would like elaboration on any of the above steps or concepts.

  • Here is a link to a solution to a very similar problem solved using kinematics.