An object with a mass of 8 kg8kg is on a ramp at an incline of pi/12 π12. If the object is being pushed up the ramp with a force of 4 N4N, what is the minimum coefficient of static friction needed for the object to remain put?

1 Answer
May 4, 2017

The coefficient of static friction is =-0.22=0.22

Explanation:

Taking the direction up and parallel to the plane as positive ↗^++

The coefficient of static friction is mu_s=F_r/Nμs=FrN

Then the net force on the object is

F=F_r+WsinthetaF=Fr+Wsinθ

=F_r+mgsintheta=Fr+mgsinθ

=mu_sN+mgsintheta=μsN+mgsinθ

=mmu_sgcostheta+mgsintheta=mμsgcosθ+mgsinθ

=mg(mu_scostheta+sintheta)=mg(μscosθ+sinθ)

So,

F/(mg)=(mu_scostheta+sintheta)Fmg=(μscosθ+sinθ)

mu_scostheta=F/(mg)-sinthetaμscosθ=Fmgsinθ

mu_s=1/costheta*(F/(mg)-sintheta)μs=1cosθ(Fmgsinθ)

=1/cos(pi/12)*(4/(8*9.8)-sin(pi/12))=1cos(π12)(489.8sin(π12))

=-0.22=0.22