Ap Calculus BC 2009 Question 6?

enter image source here

1 Answer
Apr 30, 2018

a) Simply replace x with (x- 1)^2.

e^((x- 1)^2) = 1 + (x- 1)^2 + ((x - 1)^2)^2/2 + (((x -1)^2)^3)/6 + ...

e^((x -1)^2) = 1 + (x- 1)^2 + (x - 1)^4/2 + (x - 1)^6/6 + ...

e^((x - 1)^2) = sum_(n = 0)^oo (x - 1)^(2n)/(n!)

b) Once again more algebraic manipulations.

(e^((x - 1)^2) - 1)/(x- 1)^2 = (1 + (x - 1)^2 + (x - 1)^4/2 + (x - 1)^6/6 - 1)/(x- 1)^2

(e^((x -1)^2) - 1)/(x- 1)^2 = ((x-1)^2 + (x- 1)^4/2 + (x- 1)^6/6)/(x- 1)^2

(e^((x -1)^2) - 1)/(x- 1)^2 = 1 + (x- 1)^2/2 + (x- 1)^4/6 + (x- 1)^6/24

Rewriting in the general term we get

(e^((x- 1)^2) - 1)/(x- 1)^2 = sum_(n =0)^oo (x- 1)^(2n)/((n + 1)!)

c)

L = lim_(n-> oo) ((x - 1)^(2(n + 1) - 1)/((n + 1 + 1)!))/(((x- 1)^(2n))/((n + 1)!)

L = lim_(n->oo) x/(n +2)

L = |x| lim_(n-> oo) 1/(n+ 2)

L = 0

Since this is less than 1, this converges for all values of x. Therefore, the interval of convergence is (-oo, oo).

d) Take the second derivative of f.

f''(x) = 1 + 2(x - 1)^2 + 5/4(x -1)^4 + ...

Since each term in this expansion will be positive, there will be no point of inflection (inflection points occur when f''(x) changes sign).

Hopefully this helps!