Ap Calculus BC 2009 Question 6?
1 Answer
a) Simply replace
e^((x- 1)^2) = 1 + (x- 1)^2 + ((x - 1)^2)^2/2 + (((x -1)^2)^3)/6 + ...
e^((x -1)^2) = 1 + (x- 1)^2 + (x - 1)^4/2 + (x - 1)^6/6 + ...
e^((x - 1)^2) = sum_(n = 0)^oo (x - 1)^(2n)/(n!)
b) Once again more algebraic manipulations.
(e^((x - 1)^2) - 1)/(x- 1)^2 = (1 + (x - 1)^2 + (x - 1)^4/2 + (x - 1)^6/6 - 1)/(x- 1)^2
(e^((x -1)^2) - 1)/(x- 1)^2 = ((x-1)^2 + (x- 1)^4/2 + (x- 1)^6/6)/(x- 1)^2
(e^((x -1)^2) - 1)/(x- 1)^2 = 1 + (x- 1)^2/2 + (x- 1)^4/6 + (x- 1)^6/24
Rewriting in the general term we get
(e^((x- 1)^2) - 1)/(x- 1)^2 = sum_(n =0)^oo (x- 1)^(2n)/((n + 1)!)
c)
L = lim_(n->oo) x/(n +2)
L = |x| lim_(n-> oo) 1/(n+ 2)
L = 0
Since this is less than
d) Take the second derivative of
f''(x) = 1 + 2(x - 1)^2 + 5/4(x -1)^4 + ...
Since each term in this expansion will be positive, there will be no point of inflection (inflection points occur when
Hopefully this helps!